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PROGRESS REPORT

Work has been carried out on the problems of run-up and

spin-up in a viscoelastic fluid. Three simple problems have been

considered. These are:

(i) The fluid is confined between two infinite rigid

parallel plates. These are simultaneously and instan-

taneously given equal velocities, which are then main-

tained constant. The resulting velocity field of the

fluid is calculated as a function of time.

(ii) The fluid is contained in a rigid circular cylinder of

infinite length. At some instant the cylinder is given

a longitudinal velocity which is subsequently held con-

stant. The resulting velocity field in the fluid is

calculated as a function of time.

(iii) The rigid containing cylinder is, at some instant,

given an angular velocity which is subsequently held

constant. The resulting angular velocity field in the

fluid is calculated.

The results obtained on these three problems are contained

in three papers [1,2,3].

In all of these papers, the fluid is considered to be'iso-

tropic and incompressible and the constitutive assumption is made

that in time-dependent simple shearing flows, the shear stress a,

measured at time t , depends linearly on the history K(T)

(-< T t) of the velocity gradient, thus:

a f f(t-T)K(r)d . (1)
- U
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For a fluid which has N relaxation times f(t-r) is given by

N n -(tT/n(2

f(t-T) = no 6 (t-T) + e (2)nil Xn

where the n's and X's are positive constants and 6( ) is

the Dirac delta function. If the fluid has instantaneous elas-

tic response, no M 0.

The character of the run-up or spin-up behavior depends

significantly on whether the fluid does or does not have instan-

taneous elastic response, i.e. on whether no = 0 or no  0

However, the behavior in the former case may be regarded as a

limiting case of that in the latter.

The procedure adopted in analyzing each of the problems

considered is to set up the equations governing the problem. The

Laplace transforms of the equations are formed and solved for the

Laplace transform V of the velocity. The velocity field v is

then obtained by evaluating the inverse Laplace transform.

In the case of run-up between parallel plates, is given

by

- v cosh f[ps/f (s)1 z(
s cosh{[ps/f(s)]'S h}

where 2h is the distance between the plates, z is the dis-

tance of a generic point of the fluid from the mid-plane, p is

the density of the fluid, V is the velocity of the plates,

and f(s) is the Laplace transform of f(t-T) . v is then

given by the inversion integral:
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V -- eStv(s,z)ds , (4)

where y is an arbitrary positive constant.

In [1] this integration was achieved by using the Residue

Theorem. The calculations were carried out in detail, and

curves showing the velocity profiles at various times were

plotted, for the cases when, in (2), N = 1 and no - 0

(Maxwellian fluid) and ,o  0 . The expressions for v were

obtained in the form of an infinite series, the various terms in

which are contributed by the residues at the poles of the inte-

grand in (4).

It was found in [1] that if the fluid is Maxwellian, so that

f(t-T) may be written as

f(t-T) = e-(t-T)/ , ()

velocity discontinuities propagate into the fluid from the boun-

daries and are reflected back and forth. The speed with which

these discontinuities propagate is (n/Xp) • As the discon-

tinuities propagate, they decay exponentially with decay constant
FP/Xn);5 In the case when the fluid has a single relaxation

time, but does not possess instantaneous elasticity, so that

f(t-T) is given by

f(t-T) - n 6
o (t-T) + j e'Ct'r)/X (6)

run-up is achieved by a process which is essentially diffusive

in character. However, the "steepness" of the. front increases as
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i decreases and, in the limit no - 0 , becomes a discon-

tinuity.

This interpretation of the velocity field is seen by ex-

pressing V in (3) in the form

_Vk
=(-l)k{exp[-(2k+l-y)w] + exp[-(2k~l+y)w]} , (7)~k=0

where

w - h['Ps/f(s)] , y - z/h . (8)

Then,

v = V k (-l)k[Ok(yt) + T'kylt)] , (9)
k=O

where Ok and Yk are the inverse Laplace transforms of 0k

and Tk defined by
k1

Sk(ys) - I exp[-(2k*l-y)w] ,

(10)1

7k(y,s) - . exp[-(Zk+l~y)w]

In the case when the fluid is Maxwellian, *k and Tk

have been evaluated by using Cauchy's theorem with a modified

Bromwich contour [2]. The expressions for fk and Tk were

obtained in the form of real quadratures. In the more general

cases when f(t-T) is given by (2) with no - 0 or no  0 ,

corresponding results have been obtained by using Cauchy's theorem

with a contour which consists of a strip (excluding the origin)

in the real half of the complex plane bounded by Res y and
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Res = 0 [3].

A procedure similar to that employed in [1] in the case of

run-up between parallel plates has been used to solve the prob-

lems of run-up and spin-up in an infinite circular cylinder. In

each case the expression for the velocity field is obtained as

an infinite series. As in the case of run-up between parallel

plates the velocity field may, in each case, be interpreted as the

superposition of disturbances which propagate from the cylindrical

boundary, come to a focus on the axis of the cylinder, then

diverge, and are reflected back from points on the opposite ends

of the diameters from which they originated.

The methods applied in [3] to the problem of run-up between

parallel plates can also be applied to these problems to give

alternative expressions for the velocity field. However, this

work has not, so far, been completed.

Work has also been carried out on the spin-up of a fluid

contained in the region between two parallel infinite discs. The

discs are given, at some instant, an angular velocity about a

common axis which is thereafter held constant. The constitutive

equation adopted for the fluid is a second-order equation of the

integral type and it is assumed that the velocities are suffic-

iently small so that the terms of higher degree than the second

in them can be neglected. It is also assumed that the relation of

the shear stress to the velocity gradient history, for simple

shearing flows, is Maxwellian. It has been found that angular

velocity discontinuities propagate into the fluid, similar to the

velocity of longitudinal run-up between parallel planes. Behind



6.

these discontinuities a secondary flow takes place in axial

planes which is radially outwards just behind the front and in-

wards near the discs.

Work is also in progress on small Rossby number spin-up or

spin-down in a fully spun-up viscoelastic fluid contained between

parallel discs.
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